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Abstract

Large language models such as ChatGPT
and Claude have exhibited outstanding per-
formance across diverse tasks in recent times.
Nonetheless, the powerful generative capabili-
ties of these models can be exploited to gener-
ate harmful content through jailbreaking. Ex-
isting Guardrails like NeMo Guardrails ne-
cessitate manual configuration and prompt-
ing, which may not be universally adaptable
to counter the evolving jailbreak methodolo-
gies. To tackle these challenges, we intro-
duce DSPy Guardrails, which autonomously
optimize guardrails through self-improving lan-
guage model pipelines. Our experiments have
demonstrated that DSPy Guardrails substan-
tially reduce the attack success rate of CodeAt-
tack, decreasing from 75% to 5%.

1 Introduction

In recent years, large language models (LLMs)
such as ChatGPT and Claude have achieved great
performance in various fields. While they bring
convenience to our work and research, they also
pose potential risks if they are jailbroken.

To unveil the vulnerabilities of LLMs, many re-
searchers have developed techniques (Yuan et al.,
2023; Wei et al., 2024; Ren et al., 2024) to jailbreak
LLM’s safeguards. For instance, Ren et al. (Ren
et al., 2024) introduce CodeAttack that reformu-
lates the text completion task as a code completion
task to jailbreak the LLMs. CodeAttack achieves
an attack success rate of over 80% across all tested
SOTA LLMs including GPT-4.

To ensure the safety of LLMs, some Guardrails
are developed to prevent harmfulness, includ-
ing Llama Guard (Inan et al., 2023), Nvidia
NeMo (Rebedea et al., 2023), and Guardrails
AI (Rajpal, 2023). To use these Guardrails, users
need to write specific rules and some prompts man-
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ually, which is not universal. In addition, jailbreak
techniques are constantly evolving every day.

To tackle this challenge, we propose DSPy
Guardrails that algorithmically optimizes the
Guardrails by using DSPy (Khattab et al., 2023).
There are two steps to use the DSPy Guardrails:
(1) define the LLM Program with Guardrails with
DSPy signatures and modules (2) provide some
datasets and select the DSPy compiler to automati-
cally optimize the LLM Program with Guardrails.

We use CodeAttack (Ren et al., 2024) as the
jailbreak method. Our experiments show that DSPy
Guardrails have decreased the Attack Success Rate
(ASR) from 75% to 5% by using our LLM Program
with optimized Guardrails.

2 DSPy

DSPy is a programming model that treats LMs
as abstract devices for text generation and opti-
mizes their usage in arbitrary computational graphs.
DSPy provides three concepts to enable “program-
ming with foundation models”, which are signa-
tures, modules, and teleprompters. A DSPy signa-
ture is natural-languages typed declaration, which
defines the input/output behavior of text transfor-
mation. DSPy modules encapsulate prompting
techniques, turning them into modular functions
that support any signature, which replaces existing
hand-prompting. After building up the pipeline
with modules and signatures, we can optimize the
LLM pipeline with teleprompters.
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Figure 1: Architecture of DSPy Guardrails



We build DSPy Guardrails based on DSPy,
where the architecture is shown in Fig. 1. First,
we define the input/output fields of the Assistant to
build the LLM Program with Guardrails (line 1-5
in Listing 1). The input field contains two keys, one
is the “text”, and the other is “guardrails”. The
output field contains one key, i.e., “answer”, which
is the answer of the assistant. In the signature of
the class “Assistant”, we give the descriptions of
each key, respectively. Then, we use a build-in
module “dspy.ChainOfThought” which encapsu-
lates Chian-Of-Thought techniques to instantiate
the class “Assistant” (line 6-11 in Listing 1).

After building the LLM program with guardrails,
we construct the datasets for optimizing the LLM
Program. The optimization can combine gradient
descent (for LM weights) and discrete LM-driven
optimization, i.e., for crafting/updating instructions
and for creating/validating demonstrations. DSPy
Demonstrations are like few-shot examples, but
they’re far more powerful. In this case, the demon-
strations will be integrated into the prompt and help
build optimized guardrails.
1 class Assistant(dspy.Signature):
2 text = dspy.InputField(decs="Instructions to the

assistant")
3 guardrails = dspy.InputField(desc="The safeguard to

detect harmfulness in the user's instructions.")
4 answer = dspy.OutputField(desc="This is the output

answer and execution generated by the assistant.")
5
6 class Assistant_Alpha(dspy.Module):
7 def __init__(self):
8 super().__init__ ()
9 self.generate_answer =

dspy.ChainOfThought(Assistant)
10 def forward(self , text , guardrails):
11 return self.generate_answer(text=text ,

guardrails=guardrails)

Listing 1: Defining Assistant with DSPy Guardrails

4 Evaluation

4.1 Experiment Setting
We collect 20 jailbreak prompts and use CodeAt-
tack (Ren et al., 2024) to attack the “gpt-3.5-turbo-
instruct”. We use in-context-learning with eight
shots as the baseline, which has the same shots
used for DSPy Guardrails. The teleprompter we
use is a built-in optimizer “BootstrapFewShot”.
The evaluation metric is ASR, where a lower value
indicates better safeguard performance.

4.2 Result and Discussions
As shown in Table 1, DSPy Guardrails greatly
decreases the ASR of CodeAttack. Initially at
75%, CodeAttack’s ASR decreases to 5% with
the implementation of DSPy Guardrails. With-
out an optimizer, the ASR of DSPy Guardrails is

30%, surpassing the baseline yet falling short of
the optimizer-enhanced version. This underscores
the pivotal role of the optimizer in enhancing the
self-refinement of the LLM Program in conjunction
with guardrails.

Table 1: ASR of CodeAttack defended by guardrails
methods

Guardrails Method Baseline DSPy Guardrails w/o optimizer DSPy Guardrails
ASR 75% 30% 5%

5 Conclusion

We introduce DSPy Guardrails, a method to
autonomously optimize guardrails through self-
refining language model pipelines. DSPy
Guardrails eliminate the need for developers to
create manual configurations or prompts, offering
a versatile solution to combat evolving jailbreaking
techniques.
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