
Deep Learning or Classical Machine Learning? An Empirical
Study on Log-Based Anomaly Detection

Boxi Yu
boxiyu@link.cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

Jiayi Yao
jiayiyao@link.cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

Qiuai Fu
fuqiuai@huawei.com

Huawei Cloud Computing
Technologies CO., LTD.

China

Zhiqing Zhong
cheehingchung@gmail.com

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

Haotian Xie
haotianxie@link.cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

Yaoliang Wu
wuyaoliang1@huawei.com
Huawei Cloud Computing
Technologies CO., LTD.

China

Yuchi Ma
mayuchi1@huawei.com
Huawei Cloud Computing
Technologies CO., LTD.

China

Pinjia He∗
hepinjia@cuhk.edu.cn

School of Data Science, The Chinese
University of Hong Kong, Shenzhen

(CUHK-Shenzhen), China

ABSTRACT
While deep learning (DL) has emerged as a powerful technique, its
benefits must be carefully considered in relation to computational
costs. Specifically, although DL methods have achieved strong per-
formance in log anomaly detection, they often require extended
time for log preprocessing, model training, and model inference,
hindering their adoption in online distributed cloud systems that
require rapid deployment of log anomaly detection service.

This paper investigates the superiority of DL methods compared
to simpler techniques in log anomaly detection. We evaluate basic
algorithms (e.g., KNN, SLFN) and DL approaches (e.g., CNN) on five
public log anomaly detection datasets (e.g., HDFS). Our findings
demonstrate that simple algorithms outperform DL methods in
both time efficiency and accuracy. For instance, on the Thunderbird
dataset, the K-nearest neighbor algorithm trains 1,000 times faster
than NeuralLog while achieving a higher F1-Score by 0.0625. We
also identify three factors contributing to this phenomenon, which
are: (1) redundant log preprocessing strategies, (2) dataset simplicity,
and (3) the nature of binary classification in log anomaly detection.
To assess the necessity of DL, we propose LightAD, an architec-
ture that optimizes training time, inference time, and performance
score. With automated hyper-parameter tuning, LightAD allows

∗Pinjia He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3623308

fair comparisons among log anomaly detection models, enabling
engineers to evaluate the suitability of complex DL methods.

Our findings serve as a cautionary tale for the log anomaly detec-
tion community, highlighting the need to critically analyze datasets
and research tasks before adopting DL approaches. Researchers
proposing computationally expensive models should benchmark
their work against lightweight algorithms to ensure a comprehen-
sive evaluation.

KEYWORDS
Log analysis, anomaly detection, dataset, empirical study

ACM Reference Format:
Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, YaoliangWu, Yuchi
Ma, and Pinjia He. 2024. Deep Learning or Classical Machine Learning?
An Empirical Study on Log-Based Anomaly Detection. In 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3597503.3623308

1 INTRODUCTION
Over the past decade, many online large-scale software systems
have been developed to enhance our daily lives, including search
engines, social media platforms, and machine translation systems.
These online software systems must be available on a 24/7 basis,
as any downtime may result in user dissatisfaction and significant
revenue loss, especially for large-scale distributed systems designed
to serve millions of users. In fact, according to “Downtime, Outages
and Failures - Understanding Their True Costs” [22], a critical ap-
plication failure can result in loss of application service and data,
costing companies up to $300,000 per hour in web application down-
time or $5,600 per minute. Well-known companies have suffered
significant revenue losses due to large-scale web service downtime.

https://doi.org/10.1145/3597503.3623308
https://doi.org/10.1145/3597503.3623308
https://doi.org/10.1145/3597503.3623308

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He

For example, Amazon reported a loss of $2,646,501 in revenue dur-
ing a 13-minute downtime episode [74], while Facebook suffered
a loss of approximately $426,607 in revenue during a 19-minute
site-wide outage [73].

System logs are crucial in the development and maintenance
of modern software, and are widely used to detect anomalies in
cloud systems. However, as the volume of logs continues to grow,
classical log analysis approaches that rely on manual inspection
have become inefficient and time-consuming. For example, some
modern cloud systems can produce 50 gigabytes (around 200 mil-
lion lines) of logs per hour [60]. To address this challenge, many
automatic log analysis methods have been proposed, including clas-
sical machine learning (ML)-based methods [9, 10, 15, 47–49, 51, 80]
and DL methods [21, 24, 52, 56, 62, 85]. Some DL methods claim to
outperform classical methods on datasets such as BGL and Thun-
derbird [63]. Log data needs to be transformed into vectors before it
can be fed into a model. To this end, various log vectorization meth-
ods have been proposed, including static code analysis [80], log
parsers [31, 75], and neural representations [42] using BERT [19].
However, it is unclear whether these methods are necessary, as no
analysis has compared them with a simple baseline method that
eliminates variables in the log and tokenizes the log into a set of
word tokens.

Despite the satisfactory performance of SOTA DL methods, the
data preprocessing, training, and inference processes often consume
a significant amount of time and require high-demand hardware.
Taking inspiration from Fu andMenzies’ suggestion [29] that “it is a
good practice to explore simple and fast techniques before applying
DL methods on SE tasks”, we aim to investigate whether simple
methods can achieve comparable performance to DL methods in
log anomaly detection. This leads to our first research question:
RQ1: Do DL methods have advantages over simple ones on
log anomaly detection?

To answer the research question of whether DLmethods have ad-
vantages over simple ones on log anomaly detection tasks, we con-
ducted experiments on five popular log anomaly detection datasets:
HDFS [80], BGL, Spirit, ThunderBird, and Liberty [63]. Some DL
methods have claimed to achieve excellent performance on these
datasets. However, our study found that simplemethods can achieve
the best performance on each of the five log datasets in terms of
evaluation metrics and time efficiency. We try to explain why sim-
ple log vectorization methods and simple ML-Based models can
easily beat the intricate DL models. Therefore, we ask our second
research question:
RQ2: Why do DL methods not outperform simple ones?

Our investigation has uncovered three fundamental reasons why
basic log vectorization techniques and simple machine learning-
based models can surpass complex DL models with ease. First,
the redundancy of log preprocessing strategies employed by some
approaches, such as grouping multiple lines of log messages to
generate a session window, hampers the effectiveness of DL models.
Our analysis of supercomputer log datasets such as BGL, Thun-
derbird, and Spirit [63] indicates that these datasets are labeled
in a line-by-line manner, making redundant preprocessing unnec-
essary. Second, the simplicity of log datasets can lead to varying
degrees of data leakage caused by recurring log patterns among the
datasets, which aligns with the finding in [43]. Our findings reveal

that direct log sequence/message matching can achieve compara-
ble or even better results than SOTA deep methods on HDFS and
Spirit. Additionally, after eliminating the recurring log sequences
in HDFS, simple log anomaly detection methods can still achieve
relatively high 𝐹1-Score (0.9406-0.9410) compared to deep methods
(0.8017-0.9244). Third, the innate nature of binary classification
in log anomaly detection may also contribute to the superiority
of simple binary classification methods over DL models specifi-
cally engineered for log anomaly detection. To further explore the
underlying reasons for this phenomenon, we provide a detailed
examination of binary classification in log anomaly detection and
highlight the advantages of utilizing simple binary classification
techniques. Our research findings underscore the importance of
leveraging simple and effective approaches for log anomaly detec-
tion.

In our analysis of both RQ1 and RQ2, we observed that intricate
DL methods failed to surpass their simpler counterparts across all
five public log datasets. This raises a critical question about the
necessity of employing costly DLmethods in log anomaly detection,
thereby giving our third research question:
RQ3:When should we use DL methods?

We carefully examined recent research papers on DL anom-
aly detection methods [42, 52] and discovered that their claims
of the superiority of DL methods may not always be valid due to
three factors: (1) weak baseline comparison, (2) potential ineffective
hyper-parameter tuning, and (3) neglect of time efficiency. In this
paper, we propose an approach named LightAD that optimizes both
performance and time efficiency. With automated hyper-parameter
tuning using Bayesian optimization, LightAD provides a fair com-
parison of various log anomaly detection methods.

On the deduplicated HDFS, LightAD consistently recommends
the use of simple methods, regardless of the prioritized objective,
such as 𝐹1-Score or inference time. Our experimental results cau-
tion the log anomaly detection community to carefully evaluate
new innovations before applying them, especially for cloud web
applications serving millions of users. Before deploying new and
expensive processes, it is important to compare them with simpler
and faster alternatives. Moving forward, we are interested in testing
LightAD on additional datasets to determine whether complex log
grouping or DL methods are necessary for log anomaly detection.
We believe LightAD can serve as a strong baseline for future log
studies.

There are four main contributions of this work:

• We show that complex DL methods and the related log pre-
processing techniques do not necessarily have advantages
over simple methods in both accuracy performance and time
efficiency on the current log anomaly detection benchmarks.

• We summarize three reasons why DL methods do not outper-
form simple methods: (1) redundant log data preprocessing
strategies, (2) simplicity of current log benchmarks, and (3)
the innate nature of binary classification in log anomaly
detection.

• We propose LightAD, a framework that automatically tunes
the hyper-parameters to optimize objectives leveraging both
accuracy and efficiency, and show its practical ability to
verify the necessity of DL methods.

Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

• We give a cautionary tale that critical analysis should be
conducted on the tasks before applying costly AI models.

2 BACKGROUND
2.1 Log-based Anomaly Detection Workflow
The overall framework of log anomaly detection is presented in
Fig. 1, which includes two mainstream methods: methods utilizing
log parsing and methods without parsing. Log anomaly detection
methods with log parsing comprise four steps: log collection, log
parsing, log grouping, and feature extraction. On the other hand,
log anomaly detection methods without log parsing consist of three
steps: log collection, preprocessing, and neural representation be-
fore anomaly detection. In this section, we will introduce the com-
ponents of these two mainstream methods.

Log Collection. Logs serve as historical records of runtime in-
formation in software systems. In modern large-scale distributed
systems, logs play a crucial role in diagnosing systems, but the
overwhelming volume of logs can be daunting. Thus, log collection
is the first step of automatic log anomaly detection systems.

Log Parsing. Raw log data are semi-structured and need log pars-
ing tools to be parsed into structured data that enable downstream
log analysis tasks, including usage analysis, anomaly detection,
duplicate issue identification, performance modeling, and failure
diagnosis [89]. Some works [61, 80] use static analysis techniques
to extract event templates from the source code. For closed-source
software, several data-driven methods have been adopted to parse
logs, such as SLCT [75], LogCluster [76], IPLoM [53], LKE [28],
Spell [20], and Drain [31].

Log Vectorization. As log data are natural language sentences,
they need to be processed into vectors before being fed into the
models. There are two categories of log vectorization, one is log
vectorization with log parsing, and the other is without log parsing.
For vectorization with log parsing, log grouping is the first step.
There are three log grouping methods, including fixed-window,
sliding-window [43], and session window [42, 80]. Session win-
dows, which are frequently adopted by classical ML-based methods,
are based on identifiers. For instance, HDFS [80] employs aggre-
gate log by “blk_id” to generate session window which counts the
events. For DL log anomaly detection methods, they will convert
the logs into three main types of vectors [43], which are sequential
vectors, quantitative vectors, and semantic vectors. For example,
DeepLog [21] assigns each log event with an index, and then gener-
ates sequential vectors with a certain window size. The sequential
vectors record the execution path of the log event. The quantitative
vectors are similar to the log count vectors, which record the occur-
rence of each log event in a log window. The semantic vectors use
a language model to represent the semantic meaning of log events
and convert the log windows into semantic vectors.

Inspired by the bag-of-words model, Term Frequency / Inverse
Document Frequency (TF-IDF), a well-established heuristic in infor-
mation retrieval [64, 69], is always employed as a term weighting
method to calculate the importance of words in log events. For log
vectorization without log parsing, NeurlLog [42] is proposed to
encode log by using BERT [19] to generate semantic vectors and
feed the vectors into a Transformer-based classifier [77].

2.2 Representative Approaches
To choose the representative approaches, we reviewed a series of ex-
perience reports [16, 33], empirical study [43], surveys [32, 39], and
the SOTA methods [21, 42, 52, 85] on log anomaly detection. Vari-
ous methods are being utilized for log anomaly detection, consisting
of simple ML-Based models and heavily weighted DL models. We
consider the performance of these models on several log anomaly
detection benchmarks and choose three top-notch DL models with
the best 𝐹1 𝑠𝑐𝑜𝑟𝑒 , i.e., CNN [52], NeuralLog [42], LogRobust [85]
and compare them with some commonly used simple models. For
simple models, we adopt K-nearest neighbor (KNN), single hidden
layer feed-forward neural network (SLFN), and decision tree (DT)
for log anomaly detection.

2.2.1 Classical ML-based Methods. K-nearest neighbor (KNN)
[27] is one of the most fundamental and simple classification meth-
ods. In our implementation, the training phase of KNN is to store
the feature vectors and class labels of the log data. For the inference
phase, the prediction of a log vector is assigned the label which
aligns the majority of the labels among the nearest k training sam-
ples to that query point.

SLFN.Amultilayer perceptron (MLP) is a class of fully connected
feedforward neural network, which utilizes back-propagation for
training. Single hidden layer feed-forward neural network (SLFN)
is the most naive MLP, which only contains a single hidden layer.

Decision Tree. Decision tree (DT) is like a decision support tool
that uses a tree structure with several branches to illustrate the
predicted state for each instance. Decision tree was first adopted to
diagnose failures in large internet sites by Chen et al. [15].

2.2.2 Deep Learning Methods. CNN. Lu et al. [52] propose an
approach for log anomaly detection by leveraging Convolutional
Neural Networks (CNN). The CNN-based model can learn event
relationships automatically and achieve high accuracy. The deep
CNN-based model consists of logkey2vec embeddings, three 1D
convolutional layers, dropout layer and max-pooling.

LogRobust. To tackle the challenge that log data often contain
unseen instances due to the update of log statements, Zhang et
al. [85] propose LogRobust to extract the semantic information of
the log data. Furthermore, LogRobust incorporates the attention
mechanism [5] into the Bi-LSTM model to assign different weights
to log events.

NeuralLog. As the first approach without log parsing, Neural-
Log [42] preprocesses the log messages into a set of words. Then it
uses WordPiece tokenization [70, 79] to handle the OOVwords, and
uses a pre-trained BERT [19] to obtain the semantic meaning of log
messages. To better understand the semantics of logs, NeuralLog
adopts the transformer [77] model rather than RNN-based models.

Two main factors contribute to SVM, DT, and SLFN being consid-
ered simpler than CNN [52], LogRobust [85] (based on LSTM), and
NeuralLog [42] (based on BERT). (1) Architecture complexity:
KNN, DT and SLFN have relatively simple architectures compared
to CNNs, LSTMs, and BERT. KNN only involves a distance metric
and the selection of k nearest neighbors to make a prediction. DT
uses a decision tree structure to recursively partition the input
feature space into smaller regions. SLFN only contains one hidden

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He

Normal

Event count Vectors

Sequential vectors

Session windows

Fixed windows

Sliding windows

Log Collection
Log messages
i. 081109 203518 143 INFO dfs.DataNode$DataXceiver:

Receiving block blk_1608999687919862906 src:
/10.250.19.102:54106 dest: /10.250.19.102:50010

Log events
i. Receiving block <*> src: <*> dest: <*>

Log parser

Log Parsing

(𝑬𝟏, 𝑬𝟐, … , 𝑬𝒏)
Log sequence

Log Grouping Feature Extraction

Quantitative vectors

Anomaly Detection

Classical
ML-based Models

SVM LogCluster …

Deep Learning Models

LSTM CNN …

With
Log parsing

Without
Log parsing

Preprocessing Neural Representation

Log messages
i. 081109 205931 13 INFO dfs.DataBlockScanner:

Verification succeeded for
Remove number,
punctuation, ...Contents

i. info dfs datablockscanner verification succeeded for

WordPiece Tokenization

Neural Encoder

OR

Semantic Vectors

Semantic vectors

Abnormal

Figure 1: Overview of log anomaly detection workflow

layer, whose network depth is much shallower than the DL archi-
tecture. (2) Computation cost: KNN, DT, and SLFN are relatively
computationally efficient, especially during the inference phase. In
contrast, CNNs, LSTMs, and BERT are computationally expensive
due to their complex architectures and large number of parameters.

3 EXPERIMENTAL SETUP
3.1 Research Questions
In this study, we aim to demonstrate that DL methods may not
always offer advantages over other approaches in log anomaly de-
tection. To accomplish this, we investigate three research questions:

• RQ1 Do DL methods have advantages over simple ones on
log anomaly detection?

• RQ2 Why do intricate anomaly detection methods not out-
perform simple ones? outperform simple ones?

• RQ3When do we need really DL methods?

3.2 Experimental Environments
The experiments are run on a Linux workstation with a 192GB
Memory, and GeForce RTX A6000 GPU. The Linux workstation is
running 64-bit Red Hat 4.8.5-28.

3.3 Dataset
Based on our review of experience reports [16, 33], empirical stud-
ies [43], and surveys [32, 39], we found that most of the log anomaly
datasets only contains binary labels, namely, normal and abnormal.
As a result, log anomaly detection is treated as a binary classifica-
tion task. In this paper, we evaluate log anomaly detection methods
using five commonly used public datasets: HDFS [80], Blue Gene/L
(BGL), Thunderbird, Liberty, and Spirit [63].

The HDFS dataset, collected by Xu et al. [80] on the Amazon
EC2 platform, consists of 11,175,629 log messages. The logs are seg-
mented into log sequences using block IDs and assigned a ground
truth label of normal or abnormal. The BGL, Thunderbird, Liberty,
and Spirit datasets are message-wise log datasets collected from
supercomputers, and their statistical information is provided in
Table 1. The logs contain alert and non-alert messages, which are
distinguished by alert category tags. In the first column of the log,
‘-’ denotes non-alert messages while the rest indicate alert mes-
sages. The alert and non-alert messages are considered abnormal
and normal, respectively. Given the substantial size of the Liberty,

Spirit, and Thunderbird datasets, consisting of over 200 million mes-
sages [63], we opted to selectively include a modest subset of 3.7%,
3.9%, and 4.7% respectively, employing a chronological selection
strategy. For HDFS datasets, we randomly split them into training
and testing sets with a ratio of 8:2. As for the supercomputer log
datasets, we split them into training and testing sets with a ratio of
8:2 in a chronological manner.

Table 1: Descriptive Statistics of log datasets

Dataset Category Label Granularity #Messages #Anomalies

HDFS Distributed system block-wise 11,175,629 16,838
Blue Gene /L Supercomputer message-wise 4,747,963 348,460
Thunderbird Supercomputer message-wise 10,000,000 353,794

Spirit Supercomputer message-wise 7,983,345 768,142
Liberty Supercomputer message-wise 10,000,000 3,256,972

3.4 Evaluated Models
In our experiments, we focus on revisiting the current log-based
anomaly detection methods; therefore, we evaluate several repre-
sentative classical ML-based methods and DL methods. For simple
methods, we evaluate DT [15] SLFN [34], and KNN [27]. For DL
Based methods, we evaluate CNN [52], LogRobust [85], and Neu-
ralLog [42]. We evaluate DT, LogRobust, NeuralLog, and CNN by
using the open-sourced implementation [1, 2, 42]. For KNN and
SLFN, we implement them by ourselves. or DL methods with the
parser, we used Drain [31], a widely adopted parser with good per-
formance for log preprocessing. For simple methods, we preprocess
the log by tokenizing the log and removing the digits, instead of
adopting the parser. Specifically, we construct event frequency vec-
tors for block-wise dataset by grouping the logs with the block ID.
We evaluate each model five times and take their average results.

3.5 Evaluation Metrics
To measure the effectiveness of the anomaly detection methods, we
use the Precision, Recall, and 𝐹1-Score metrics, represented by the
abbreviations P, R, F1, respectively. We characterize their outcome
as True Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN). TP represents the number of abnormal log sequences
that are correctly detected by the anomaly detection methods. TN
represents the number of normal log sequences that are correctly
detected by the anomaly detection methods. FP represents the num-
ber of log sequences that are mistakenly identified as anomalies.

Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

FN represents the abnormal log sequences that are not detected by
the anomaly detection methods. The evaluation metrics are defined
as below:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: the ratio between number of correctly detected
anomalies and number of detected anomalies: 𝑃𝑟𝑒𝑐 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
• 𝑅𝑒𝑐𝑎𝑙𝑙 : the ratio between number of correctly detected anom-
alies and total number of anomalies: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
• 𝐹1 𝑠𝑐𝑜𝑟𝑒 : the harmonic mean between 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 :
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2∗𝑃𝑟𝑒𝑐∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐+𝑅𝑒𝑐𝑎𝑙𝑙

4 RESULTS AND DISCUSSIONS
4.1 RQ1: Do DL Methods Have Advantages Over

Simple Ones on Log Anomaly Detection?
To address this question, we utilize simple anomaly detection mod-
els (KNN, DT, SLFN) and compare them with three SOTA DL meth-
ods (CNN [52], LogRobust [85], NeuralLog [42]) in terms of both ac-
curacy and runtime efficiency. For the simple approaches, we utilize
different preprocessing strategies for block-wise and message-wise
log datasets.

We process the block-wise dataset (HDFS [80]) by extracting
the tokens from each text log message (excluding header) split by
spaces and removing any tokens containing digits. We group the log
messages into log sequences using 𝑏𝑙𝑘𝑖𝑑 and encode them with the
event frequency. The entire preprocessing workflow is illustrated
in Fig. 2.

For the message-wise datasets (BGL, Thunderbird, Spirit, and
Liberty), our anomaly detection method is even simpler. Fig. 3
illustrates the approach, where we begin by tokenizing the log
messages using the same way as in the HDFS dataset. However, we
do not convert the tokenized log messages into numerical vectors.
Rather, we calculate the Jaccard distance to measure the distance
between log messages:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵) = 1 − |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | , (1)

where 𝐴 and 𝐵 each represent the set of a single tokenized log
message. We then pair each tokenized log message in the testing
set with its nearest log message in the training set. The predicted
label of a log message in the testing set is aligned with that of the
paired log message in the training set. To ensure fairness when
comparing our simple methods with the DL methods, we set the
window size and stride to 10 in the evaluation stage, as in the DL
methods.

For the DL methods, we follow the preprocessing methods and
hyper-parameters settings in the original paper. We empirically
tune the parameters by grid search with cross-validation approach
if the hyper-parameters are not provided in the paper or the method
hasn’t been tested on a specific dataset. For the simple methods, we
also tune the hyper-parameters by grid search with cross-validation.
Specifically, we set the number of neighbors as 1 in KNN.

4.1.1 Comparison on Accuracy. Table 2 displays the performance
scores of both deep methods (CNN [52], LogRobust [85], Neural-
Log [42]) and simple methods (KNN, DT, SLFN). Due to the incom-
patibility of DT and SLFN with the data format derived from our
specific preprocessing methods for message-wise datasets, these

techniques were not evaluated on these datasets. Consequently,
their corresponding evaluation metrics are The highest scores are
indicated in bold font. Overall, it is evident that the simple methods
outperform the complex ones. Across all five datasets, there is at
least one simple method that can achieve the highest precision rate,
recall rate, and 𝐹1-Score. Only on liberty, NeuralLog can achieve
the perfect score, drawing with KNN.

Fig. 4 compares the performance delta between the best simple
methods and the best deep methods. Liberty is not included in Fig. 4
for the best deep method (NeuralLog) and KNN can both achieve
perfect scores. Simple methods beat the deep ones on all the other
four datasets with respect to all the evaluation metrics. Note that
the highest precision, recall, or 𝐹1-Score may not come from the
same model.

To show the superiority of the classical MLmethods, we compare
them with DL methods on a more challenging benchmark, i.e., we
only use 1% of the data in the train dataset for training the model.
The results are shown in Table 3, where we can see that many DL
methods’ performance is largely undermined. For instance, CNN
achieved a mere 0.0440 𝐹1-Score on Spirit, while LogRobust [85]
achieved only 0.5579 𝐹1-Score on BGL. In contrast, KNN demon-
strated a range of 𝐹1-Scores from 0.9135 to 1.000. These findings
indicate that the simpler methods exhibit greater robustness when
faced with the challenges presented by this benchmark.

Table 2: Overall Performance on five public datasets

Dataset CNN LogRobust NeuralLog KNN (N=1) DT SLFN

P 0.9840 0.9858 0.9942 0.9986 0.9988 0.9962
HDFS R 0.9895 0.9890 0.9970 1.0000 0.9991 0.9962

F1 0.9867 0.9874 0.9956 0.9988 0.9990 0.9962
P 0.5988 0.6120 0.9493 0.9747 N/A N/A

BGL R 0.9749 0.9749 0.9796 0.9858 N/A N/A
F1 0.7419 0.7520 0.9641 0.9802 N/A N/A

Thunder-
bird

P 0.9680 0.9613 0.9922 0.9939 N/A N/A
R 0.8785 0.9025 0.8833 1.0000 N/A N/A
F1 0.9211 0.9310 0.9345 0.9970 N/A N/A
P - - 0.9770 1.0000 N/A N/A

Spirit R - - 0.9414 1.0000 N/A N/A
F1 - - 0.9587 1.0000 N/A N/A
P 0.9999 0.9985 1.0000 1.0000 N/A N/A

Liberty R 0.9999 0.9985 1.0000 1.0000 N/A N/A
F1 0.9936 0.9932 1.0000 1.0000 N/A N/A

‘-’ denotes “out of memory” error, N/A denotes not applicable.

4.1.2 Comparison on Time Efficiency. Table 4 illustrates both the
training time and inference time of all the methods we evaluate.
We use bold fonts to indicate the least runtime. In general, simple
methods run faster than deep methods on all five datasets in terms
of both training time and inference time. On HDFS, KNN has the
shortest training time (e.g., 3,225𝑋 faster than NeuralLog) while DT
has the shortest inference time (e.g., 185𝑋 faster than NeuralLog).
In the case of the other four supercomputer datasets, we also see
a significant efficiency advantage with our KNN approach during
both the training and inference stages. For instance, KNN’s training
time on BGL is 1, 278𝑋 faster than NeuralLog, and KNN’s inference
time on BGL is 23𝑋 faster than NeuralLog. Even though our ex-
periment is conducted with 192GB RAM, CNN and LogRobust still
cause “out of memory” error on Spirit, indicating deep methods’
high demand for hardware.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He

Raw Log Messages

RAS KERNEL INFO CE sym <*>, at <*>, mask <*>,

…………

RAS KERNEL INFO <*>, ddr errors(s) detected and corrected on
rank <*>,, bit <*>

1119859191 2005.06.27 R16-M1-N2-C:J17-U01 2005-06-27-00.59.51.127175
R16-M1-N2-C:J17-U01 RAS KERNEL INFO CE sym 0, at 0x1b8594e0, mask
0x40

…………

1121484659 2005.07.15 R33-M0-N6-C:J13-U11 2005-07-15-20.30.59.176883
R33-M0-N6-C:J13-U11 RAS KERNEL INFO 1 ddr errors(s) detected and
corrected on rank 0, bit 7

Tokenized Log Messages

Eliminate headers and
numerical tokens

Raw Log Messages

Eliminate headers and numerical tokens

blk_3777400576053320362:

Received block <*> of size <*>
from <*>

blockMap updated: <*> is
added to <*> size <*>

…………

Tokenized Log Messages in Blocks

blk_5852844080027817147:

PacketResponder <*> for block
<*> terminating

Received block <*> of size <*>
from <*>

…………

…

Log Vectors

blk_3777400576053320362:

[5, 0, 0, 0 ……]

blk_-5852844080027817147:

[1, 0, 3, 0 , ……]

…………

Event-frequency Vectorization

1081109 213028 2206 INFO
dfs.DataNode$PacketResponder: Received
block blk_3777400576053320362 of size
67108864 from /10.251.31.5

081109 213217 2267 INFO
dfs.DataNode$PacketResponder:
PacketResponder 0 for block blk_-
5852844080027817147 terminating

…………

Figure 2: Preprocessing of block-wise datasets for simple methods

Raw Log Messages

RAS KERNEL INFO CE sym <*>, at <*>, mask <*>,

…………

RAS KERNEL INFO <*>, ddr errors(s) detected and
corrected on rank <*>,, bit <*>

1119859191 2005.06.27 R16-M1-N2-C:J17-U01 2005-06-
27-00.59.51.127175 R16-M1-N2-C:J17-U01 RAS KERNEL
INFO CE sym 0, at 0x1b8594e0, mask 0x40

…………

1121484659 2005.07.15 R33-M0-N6-C:J13-U11 2005-07-
15-20.30.59.176883 R33-M0-N6-C:J13-U11 RAS KERNEL
INFO 1 ddr errors(s) detected and corrected on rank 0, bit 7

Tokenized Log Messages

Eliminate headers and numerical tokens

Figure 3: Preprocessing of message-wise datasets for simple
methods

Table 3: Overall Performance on five public datasets (1% train-
ing dataset)

Dataset CNN LogRobust NeuralLog KNN (N=1) DT SLFN

P 0.8782 0.9104 0.9387 0.9824 0.9796 0.9537
HDFS R 0.7601 0.8498 0.8246 0.9713 0.9917 0.8032

F1 0.8177 0.8747 0.8766 0.9766 0.9856 0.8714
P 0.3792 0.4869 0.7903 0.9935 N/A N/A

BGL R 0.9028 0.7661 0.9324 0.9754 N/A N/A
F1 0.5055 0.5579 0.8258 0.9844 N/A N/A

Thunder-
bird

P 0.4435 0. 9492 0.9997 0.9912 N/A N/A
R 0.8559 0.8277 0.8790 0.9048 N/A N/A
F1 0.5728 0.8836 0.9354 0.9455 N/A N/A
P 0.0979 0.0307 0.4039 0.9193 N/A N/A

Spirit R 0.0651 0.0368 0.3126 0.9078 N/A N/A
F1 0.0440 0.0321 0.3430 0.9135 N/A N/A
P 0.9479 0.9746 1.0000 1.0000 N/A N/A

Liberty R 0.9844 0.9895 1.0000 1.0000 N/A N/A
F1 0.9657 0.9817 1.0000 1.0000 N/A N/A

N/A denotes not applicable.

Table 4: Training and Inference Efficiency on five public
datasets (seconds)

Dataset CNN LogRobust NeuralLog KNN (N=1) DT SLFN

HDFS Train 74.7774 41.4481 6,044.0218 1.8742 2.3986 29.8954
Infer 2.7748 2.2360 55.4187 2.3104 0.2994 0.4844

BGL Train 75.0809 63.3461 5,188.3536 4.0601 N/A N/A
Infer 3.2555 3.2807 72.9399 3.1934 N/A N/A

Thunder-
bird

Train 581.3999 592.0321 10,218.6227 10.2145 N/A N/A
Infer 30.8276 29.6045 85.5081 10.4084 N/A N/A

Spirit Train - - 6,626.9311 7.5750 N/A N/A
Infer - - 110.3898 2.1295 N/A N/A

Liberty Train 440.0547 473.2985 10,187.34908 9.6261 N/A N/A
Infer 26.0857 30.0932 94.7462 4.3901 N/A N/A

‘-’ denotes “out of memory” error, N/A denotes not applicable.

Table 5 compares the runtime of different log preprocessing
strategies. The least preprocessing time is marked in bold. CNN and
LogRobust both utilize a log parser to generate log templates from
which log semantics is extracted. NeuralLog adopts a neural repre-
sentation method to preprocess raw logs into log vectors without

0.0046

0.0254

0.0017

0.023

0.0030 0.0062

0.0975

0.0586

0.0044
0.0161

0.0625

0.0413

0

0.02

0.04

0.06

0.08

0.1

0.12

HDFS BGL Thunderbird Spirit

Sc
or

e
D

el
ta

 (B
es

t
si

m
pl

e
m

et
ho

d-
Be

st
 d

ee
p

m
et

ho
d)

Precision
Recall
F-score

Figure 4: Comparison of performance scores between the
best simple method and the best deep method

parsing. Our naive preprocessing has the least runtime on all the
five datasets we use. Our naive preprocessing strategies for simple
methods run 4𝑋 to 12𝑋 faster than the neural representation on
the five log datasets, and 13.6𝑋 to 19.3𝑋 faster than the log parser
with semantics extraction on the four log datasets, where the time
for preprocessing Spirit via the log parser is omitted due to “out of
memory” error.
RQ1 Answer: DL methods are neither better in performance
scores nor runtime efficiency than simple methods on log anom-
aly detection.

Table 5: Preprocessing Efficiency on five public datasets (sec-
onds)

Method HDFS BGL Thunderbird Spirit Liberty

Parser+Semantics 980.2582 434.9437 1,114.0291 - 1,244.7097
Neural representation 289.1004 205.1231 323.4426 568.4599 484.8715

Ours 71.8927 23.7540 75.1366 47.0459 64.4417

‘-’ denotes “out of memory” error

4.2 RQ2: Why Do Intricate Anomaly Detection
Methods Not Outperform Simple Ones?

To gain insight into the reasons behind the comparable, and often-
times superior, performance of simplistic binary classifiers over in-
tricately designed DL methods in the context of log-based anomaly
detection, we propose three potential explanations: (1) the utiliza-
tion of redundant log preprocessing strategies, (2) the relatively
straightforward nature of the datasets, and (3) the intrinsic charac-
teristics of binary classification tasks.

4.2.1 Redundant Log Preprocessing Strategies. As shown in RQ1,
complicated log preprocessing methods are much slower than our
simple preprocessing methods. Furthermore, deep methods based

Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

on complex log preprocessing do not show any advantage over
their simple counterparts in terms of both performance score and
runtime efficiency. In addition to the uncalled-for log vectorization
methods, log grouping strategies should be carefully examined in
accordance with the granularity of labels. For HDFS dataset [80],
most anomaly detection methods aggregate logs with the identifier,
which is reasonable for the fact that Xu et al. [80] labeled the dataset
on the block level. However, the reason why the recent line of re-
search adopts session window grouping on supercomputer datasets
is unclear. According to the original paper [63] that introduces
the supercomputer datasets, the labeling procedure is performed
on log message level with a combination of regular expressions
and system administrators’ intervention. Therefore, it is reasonable
for us to challenge the validity of window-wise log grouping in
anomaly detection. As shown in Table 2, KNN with our simple log
preprocessing strategies outperforms the DL methods, especially
for the message-wise datasets. For instance, on Thunderbird, the 𝐹1-
Score of KNN is 0.0625 higher than the best DL method NeuralLog.
This could support our claim that message-wise datasets shouldn’t
be aggregated by windows. As for NeuralLog, its performance dis-
parity with simple methods remains relatively stable on different
datasets (F-score difference: 0-0.0625). However, to further show
that window aggregation is unnecessary, we re-run NeuralLog with
a window size of 1 on BGL, Thunderbird, and Spirit. Liberty is not
used for NeuralLog can already achieve perfect score with window
size 10. Fig. 5 shows the score delta of NeuralLog when setting
its window size to 1 and 10, respectively. The 𝐹1-Scores on the
three datasets are improved by 0.0007, 0.0401, and 0.0077, which
demonstrate that the session window is useless. Although avoiding
grouping improves the performance of NeuralLog, its 𝐹1-Scores on
the three datasets are still lower than KNN.

0.0162

0.0013

-0.0101
-0.0023

0.0734

0.0112

0.0007

0.0401

0.0077

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

BGL Thunderbird Spirit

Sc
or

e
D

el
ta

 (N
eu

ra
lL

og
w

in
do

w
=

1
–

N
eu

ra
lL

og
w

in
do

w
=

10
)

Precision
Recall
F-score

Figure 5: Comparison of NeuralLog performance scoreswhen
setting window to 1 and 10

4.2.2 Simplicity of the Datasets. The overwhelming extent of data
leakagemight be a potential reasonwhy simplemethods can achieve
extremely high scores. Note that different preprocessing strate-
gies may lead to different extent of data leakage. Thus, for all five
datasets, we first preprocess the data with our naive strategy and
log parser, respectively. Then we record the number of test data
that have/haven’t appeared in the training set in the second and
third column in Table 6. We further measure the extent of data
leakage with the percentage of leaked data in the fourth column.
Except for BGL, data leakage on the other four datasets all exceeds
98%. To show how data leakage can make anomaly detection easier,
we adopt a very naive matching algorithm: (1) if the test data has

an identical match in the training set, it should have the same label
as the matched training data, (2) otherwise, we randomly predict
the label with uniform distribution (p=0.5). As shown in the last
column of Table 6, the naive matching algorithm can achieve an
𝐹1-Score of 0.9968 with both our naive preprocessing and log parser
on HDFS. Combining with Table 2, we can see naive match can
outperform all the intricate deep models! The naive match method
achieves a perfect score on the Liberty dataset, just like NeuralLog,
and slightly outperforms CNN and LogRobust. While the naive
match falls short in achieving satisfactory scores on BGL, Thunder-
bird, and Spirit, the presence of a substantial amount of leaked data
in the test dataset might still aid in anomaly detection.

Table 6: Extent of Data leakage and results with naive match

Dataset # Unique # Duplicate % Duplicate F-score by naive match

HDFS ours 46 114,967 0.9996 0.9968
parser 46 114,967 0.9996 0.9968

BGL ours 426,475 523,118 0.5509 0.2222
parser 425,749 516,950 0.5484 0.2244

Thunder-
bird

ours 10,791 1,989,209 0.9946 0.8726
parser 37,095 1,957,932 0.9814 0.6659

Spirit ours 295 1,596,374 0.9998 0.8926
parser 4,537 1,587,210 0.9971 0.3512

Liberty ours 1 1,999,999 1.0000 1.0000
parser 58 1,989,720 1.0000 1.0000

To further investigate whether data leakage is a major contrib-
utor to the high anomaly detection accuracy, we eliminate the
repetitive log sequences in the HDFS dataset. We use the ground
truth template to perform the elimination process, and the dedu-
plicated HDFS only 589 log vectors. Then we run all the methods
again on the dataset without data leakage. However, we are unable
to perform the same elimination process on the four supercomputer
datasets in that the anomaly detection should be conducted on the
log message level, and eliminating duplicate log messages seems to
be far divorced from real-world scenarios.

Table 7 displays the results obtained by various methods on the
original HDFS, deduplicated HDFS, and deduplicated HDFS with
Bayesian tuner. The highest scores are highlighted in bold. Notably,
all methods experience a decline in performance when duplicate
log sequences are eliminated. This decline is more pronounced in
the case of deep methods compared to simpler ones. While the 𝐹1-
Scores for all three simple methods remain above 0.9, deep methods
achieve an 𝐹1-Score of approximately 0.8. It’s worth mentioning
that we adhere to the hyperparameters outlined in RQ1. However,
different methods may exhibit varying sensitivity to their respective
hyperparameters. Consequently, we fine-tune the hyperparameters
for each method using Bayesian optimization [72]. Tables 8 and 9
provide details on the hyperparameters and their tuning ranges for
simple methods and deep methods, respectively. As demonstrated
in Table 7, Bayesian tuning significantly enhances the 𝐹1-Scores
for all methods. All simple methods achieve an 𝐹1-Score of ap-
proximately 0.94. Among the deep methods, CNN experiences the
most substantial improvement, increasing its 𝐹1-Score from 0.8011
to 0.9244, while reducing the 𝐹1-Score gap with the best simple
method (i.e., DT) from 0.1389 to 0.0166. However, LogRobust and
NeuralLog only achieve 𝐹1-Scores of 0.8017 and 0.8464, respectively.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He

In summary, simple methods continue to outperform deep methods
on deduplicated log dataset.

Table 7: Comparison of results on original hdfs and dedupli-
cated hdfs

Dataset CNN LogRobust NeuralLog KNN DT SLFN

P 0.9840 0.9858 0.9971 0.9986 0.9988 0.9962
Original HDFS R 0.9895 0.9890 0.9984 1.0000 0.9991 0.9962

F1 0.9867 0.9874 0.9977 0.9988 0.9990 0.9962
P 0.6690 0.6644 0.6847 0.8975 0.9029 0.8871

Deduplicated HDFS R 1.0000 1.0000 0.9707 0.9263 0.9816 1.0000
F1 0.8011 0.7979 0.8005 0.9105 0.9400 0.9399

Deduplicated HDFS
with Bayesian Tuner

P 0.9009 0.6710 0.8218 0.8945 0.8967 0.8930
R 0.9542 0.9975 0.8818 0.9922 0.9920 0.9947
F1 0.9244 0.8017 0.8464 0.9406 0.9410 0.9407

…

Cross ValidationTraining Data

Bayesian Optimizer

solver: {‘adam’, ‘sgd’, …}
activation: {‘logistic’, …}
…

max_depth: {1, 2, 3, 4, …}
min_leaf_node: {1, 2, 3,…}
…

parameter_1: {‘linear’, …}
parameter_2: {1, 2, 3, …}
…

Model & Parameter Pool Optimization Goals

Training Time

Inference Time

Validation Score

Is your model
“the BEST” ?

Simple baseline models

Your proposed model

…

Testing Data

Figure 6: Workflow of LightAD

4.2.3 Innate Nature of Binary Classification in Log Anomaly De-
tection. The task of binary classification can invariably be concep-
tualized as the partitioning of a multi-dimensional space into two
distinct segments, achieved through the use of one or more hy-
perplanes. A pertinent question arises in log anomaly detection:
Can binary classification inherently be addressed through the ap-
plication of simplistic methods? Simple non-parametric methods
(e.g., KNN, DT) should always have good results as long as the
data characteristics of train data do not deviate much from the test
data. According to Huang et al. [34], SLFN with a non-constant
bounded activation function (e.g., sigmoid) can form disjoint deci-
sion regions with arbitrary shapes in a multi-dimensional space.
This conclusion can be further generalized to certain non-bounded
activation functions [34]. In the context of binary classification in
log anomaly detection, the log data, owing to the inherent patterns
exhibited in the logging systems, may invariably encompass re-
curring log data within the corpus. As a result, simple methods
such as KNN, DT, and SLFN are considered potential candidate
methods for effectively addressing the binary classification task of
log anomaly detection. Therefore, it is unnecessary to adopt intri-
cate time-consuming deep methods before the attempt to adopt
time-consuming DL methods. Moreover, the intricate network may
sometimes backfire on a simple binary classification task. As shown
in Table 7, even with optimal hyper-parameters, the 𝐹1-Score of
LogRobust is only 0.8017, much worse than the average 𝐹1-Score

of 0.94 for the simple methods on deduplicated HDFS. LogRobust
leverages the sequential information of log event occurrence by
adopting LSTM architecture. However, the order of log event oc-
currence might be misleading for anomaly detection since HDFS is
labeled with respect to event count vectors [80].

RQ2 Answer : Intricate log anomaly detection methods cannot
outperform the simple methods due to (1) redundant log pre-
processing strategies, (2) simplicity of dataset, (3) the innate
nature of binary classification in log anomaly detection.

4.3 RQ3: When DoWe Really Need DL Methods?
In the field of log-based anomaly detection, most research [42, 52,
85] do not compare the proposed models with their naive counter-
parts appropriately.

In the context of log-based anomaly detection, or in a wider con-
text of binary classification tasks, complex models might always be
inferior to their naive counterparts. Bear in mind that the inferiority
may come from both accuracy and efficiency. However, there are
several reasons why most research [52, 85] claim their proposed
models are better than the naive baseline models: (1) ignored base-
line models, (2) potential ineffective hyper-parameter tuning, (3)
overlook in time efficiency.

Many naive binary classifiers are not included in the comparison
when a new model is proposed. LogRobust [85] and NeuralLog [42]
compare themselves with only two simple methods, LR [9] and
SVM [47]. None of the simple methods (KNN, DT, SLFN) we adopt
is included in their comparison. CNN [52] doesn’t include any naive
binary classifiers in the paper.

Ineffective parameter tuning may provide a false conclusion that
the proposed model is better than the naive ones. For instance, Le
et al. [42] claim that NeuralLog can achieve an 𝐹1-Score of 0.98
while SVM can only achieve an 𝐹1-Score of 0.96. Note that they
employ Loglizer [2] for SVM implementation. Loglizer’s SVM is
implemented with sklearn.LinearSVC [66] which only supports
linear kernels. The 𝐹1-Score on HDFS can be easily boosted to 0.99
by adopting a polynomial kernel with sklearn.svm.SVC.

In log anomaly detection, both training time and inference time
are important. Due to the huge size of log data [60], it takes a long
time for the model to retrain the model with the mountains of
data. Besides, long inference time may lead to more revenue lost
if the anomalies of the software systems have not been reported
in time. [23]. Recent DL studies rarely provide an analysis of time
efficiency with the most efficient classical approaches (e.g., DT,
KNN, or SLFN).

To determine whether a proposed model is really worth using,
we propose LightAD, an automated framework to compare the
proposed anomaly detection model with naive baseline models.
Fig. 6 shows the workflow of LightAD. We first prepare the set of
naive baseline models and their corresponding hyper-parameter
spaces. The hyper-parameter space for the proposed model should
also be prepared. For each model, we optimize its hyper-parameters
with respect to ModelGain which leverages three aspects of the
model performance: (1) accuracy, (2) training time per log sequence
and (3) inference time per log sequence. We formalize ModelGain
as the following:

Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 8: Parameter Pool for simple methods

Models Parameters Default Tuning Range Description

KNN n_neighbors 5 [1,10] Number of the nearest neighbors used for classification.
metric “euclidean” [“euclidean”, “manhattan”, “cosine”] Metric to use for distance computation.
criterion “gini” [“gini”, “entropy”, “log_loss”] The function to measure the quality of a split.
splitter “best” [“best”, “random”] The strategy used to choose the split at each node.

DT max_depth None None ∪ [5, 70] Maximum depth of the tree.
min_samples_split 2 [2, 5] Minimum number of samples required to split an internal node.
min_samples_leaf 1 [1, 5] Minimum number of samples required to be at a leaf node.
hidden neurons 100 [10, 200] Number of neurons in the hidden layer.

activation “relu” [“identity”, “relu”, “logistic”, “tanh”] Activation function for the hidden layer.
SLFN alpha 1e-4 [1e-6, 1e-2] Strength of the L2 regularization term.

tol 1e-4 [1e-6, 1e-2] Tolerance for the optimization.
max_iter 200 [20, 400] Maximum number of iterations.

Table 9: Parameter Pool for deep methods

Models Parameters Default Tuning Range Description

hidden_size 128 [1, 256] Number of neurons in the hidden layer.
embedding_dim 32 [1, 64] The embedding size for log events.

CNN epoches 5 [1, 20] Maximum number of iterations.
learning_rate 0.05 [1e-3, 1e-1] The learning rate during training phase.
batch_size 1,024 [32, 2048] Number of samples that will be propagated.
hidden_size 128 [1, 256] Number of neurons in the hidden layer.

embedding_dim 32 [1, 128] The embedding size for log events.
epoches 5 [1, 20] Maximum number of iterations.

LogRobust learning_rate 1e-2 [1e-3, 1e-1] The learning rate during training phase.
batch_size 1,024 [16, 2,048] Number of samples that will be propagated.
num_layers 2 [2, 12] Number of layers in the fully connected neural network.

num_directions 2 [1, 2] Number of directions used in LSTM
ff_dim 2,048 [1536, 2560] Size of the feed-forward network.
epoches 20 [5, 50] Maximum number of iterations.
batch_size 64 [1, 64] Number of samples that will be propagated.

NeuralLog init_lr 3e-4 [1e-4, 1e-1] Initial learning rate.
num_heads 12 [2, 6] Number of attention heads.
dropout 1e-1 [1e-2, 1e-1] The dropout rate during training phase.
val_ratio 0.1 [0.1,0.4] The ratio of validation set in train set.

𝑀𝑜𝑑𝑒𝑙𝐺𝑎𝑖𝑛 = 𝜆1 ∗
𝐹 − 𝐹0
𝐹0

+ 𝜆2 ∗
𝑇𝑡𝑟𝑎𝑖𝑛 −𝑇0

𝑇0

+ 𝜆3 ∗
𝑇𝑖𝑛𝑓 𝑒𝑟 −𝑇1

𝑇1

(2)

where 𝐹 stands for 𝐹1-Score, 𝑇𝑡𝑟𝑎𝑖𝑛 and 𝑇𝑡𝑒𝑠𝑡 are the training
and inference time per log sequence respectively. 𝜆1, 𝜆2 and 𝜆3
are three positive constants, indicating the relative importance of
model accuracy, training efficiency, and inference efficiency. 𝐹0, 𝐹0,
𝑇0,𝑇0,𝑇1 and𝑇1 are predetermined normalization constants to make
the aggregation of metrics with different units reasonable. Note that
𝐹0 should be positive and 𝑇0, 𝑇1 should be negative since higher
𝐹1-Score and shorter training and inference time are preferred.
For each model, its hyper-parameters are optimized with Bayesian
Tuner [72]. Finally, we calculate the ModelGain for each model on
the test dataset. The model with the highest ModelGain is the best
model. If the best model happens to be the proposed model, then
we conclude that the proposed model is valuable. Otherwise, the
proposed model is inferior to the best simple model. The main steps
of LightAD are described in Fig. 7.

Table 10 shows the output model under different priorities. The
highest scores under different priorities are marked in bold. The
first column indicates the objective we want to prioritize upon
which, in the second column, we determine the weights for each
objective. The normalization constants are set as: 𝐹0 = 0.2, 𝐹0 = 0.8,
𝑇0 = −0.03,𝑇0 = 0,𝑇1 = −0.002 and𝑇1 = 0. We only include CNN as
“the proposed model” in that CNN has the best performance on the
deduplicated HDFS dataset as in Table 7. As shown in the last col-
umn of Table 10, the optimal models under different priorities are all
simple methods. According to LightAD, KNN is recommended for
prioritizing training time, while DT is the preference for the other
three priority settings: accuracy, inference time, and a balanced
priority among all 𝜆𝑖 for 𝑖 ∈ {1, 2, 3}.

RQ3 Answer: We propose LightAD, an automated framework
to compare the proposed anomaly detection model with simple
baseline models. On the deduplicated HDFS dataset, LightAD
suggests simple methods are always superior to deep methods
under different priorities.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He

Table 10: The optimal models output by LightAD with differ-
ent priorities on deduplicated HDFS

Priority (𝜆1, 𝜆2, 𝜆3) Model ModelGain Optimal Model

CNN 0.5904
Accuracy (1.0, 0.0, 0.0) KNN 0.7000 DT

DT 0.7030
SLFN 0.6824
CNN 0.2593

Train (0.5, 0.5, 0.0) KNN 0.3514 KNN
DT 0.3499
SLFN 0.3377
CNN 0.1896

Inference (0.5, 0.0, 0.5) KNN 0.3076 DT
DT 0.3462
SLFN 0.3377
CNN 0.1065

Balanced (0.3, 0.3, 0.3) KNN 0.1850 DT
DT 0.2121
SLFN 0.1984

4.4 Threats to Validity
External Validity.With the advancement of cloud computing, a
wide range of cloud software has emerged along with their cor-
responding logging systems. This paper shows that simple and
fast methods can outperform expensive cost DL methods on five
public log datasets. This is due to the lack of available log anomaly
detection datasets. For instance, Le et al. [43] study four public log
datasets in their study, and He et al. [33] include two datasets. Our
study contains all the log datasets of these works and adds one
more log dataset, i.e., Liberty [63]. However, all the existing public
log datasets are old. HDFS was collected in 2009 [80] while the
other four supercomputer datasets were generated between 2005
and 2007 [63]. In the future, we will collect log datasets on various
software systems to validate the effectiveness of LightAD.
Internal Validity. There are two main threats to internal validity.
The first threat is that we only focus on supervised log anomaly
detection models (e.g., LogRobust [85]) whereas unsupervised mod-
els (e.g., DeepLog [21]) are not included. This could be a potential
threat for us to generalize our findings to the entire log anomaly
detection community. The second threat is the incomplete use of
some log datasets. Due to the large data size of Thunderbird, Lib-
erty, and Spirit, we only utilize specific segments of these datasets.
Even though the segmentation of huge datasets is commonly used
in previous works [42, 43], different selections of the log datasets
could affect the results to some extent.

5 RELATEDWORK
5.1 Empirical Studies of Classical Machine

Learning Over Deep Learning
Despite the remarkable performance of DL in many areas, it can
be computationally expensive and requires a GPU for parallel com-
putation. There are some research works [12, 29, 40, 54, 57] that
show that DL methods are slower and less accurate than classical
methods. For example, Cao et al. [12] showed that LSTM-based DL

1. Let 𝑆 denote the set of simple models (e.g., DT, KNN), 𝑘 denote of
proposed model (e.g., CNN, LogRobust) and𝑀 denote 𝑆 ∪ {𝑘 }. For each
𝑚 ∈ 𝑀 , Space𝑚 denotes the corresponding hyper-parameter space in
which these hyper-parameters need to be tuned. |Space𝑚 | denotes the
dimension of 𝑆𝑝𝑎𝑐𝑒𝑚 .
2. LightAD initially runs each𝑚 for 𝑁𝑚 = 10 ∗ |Space𝑚 | times. Each
run is denoted as run𝑖∈𝑁𝑚 and the corresponding hyper-parameters are
contained in set 𝐻𝑚 .
3. Each run𝑖 is scored with a certain optimization objective. In the case of
our LightAD, the objective is to maximize ModelGain, leveraging three
aspects of the model: accuracy, train time, and infer time. The set of scores
is kept in SCORES(𝑚) .
4. LightAD adopts Bayesian Tuner which builds a surrogate function S𝑚
(e.g., Gaussian Process) based on SCORES(𝑚) and 𝐻𝑚 . The goal of S𝑚
is to approximate F𝑚 = F(Score |𝑚,𝑆𝑝𝑎𝑐𝑒𝑚) . ℎ𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥S𝑚 and
ModelGain(ℎ𝑛𝑒𝑤) are added into 𝐻𝑚 and SCORES(𝑚) , respectively.
5. Step 3 is repeated until max𝑖𝑡𝑒𝑟 = 10 ∗ |Space𝑚 |2 is reached.
6. For each𝑚 ∈ 𝑀 , BESTPARAMS(𝑚) = 𝑎𝑟𝑔𝑚𝑎𝑥SCORES(m).
7. Return the model with the highest score on the test dataset and its
corresponding optimal hyper-parameters. If the proposed model 𝑘 is
exactly the best model, then it is considered as valuable. Otherwise, 𝑘 is
considered as redundant.

Figure 7: Procedure LightAD: strive to find the best model
that maximizes ModelGain on training and validation data
and check whether the proposed model is valuable

is 1, 000𝑋 slower despite having lesser accuracy in system anom-
aly detection. Menzies et al. [57] demonstrated that combining
clustering algorithms with local classification algorithms achieved
comparable performance to DL models while running hundreds of
times faster. Inspired by these empirical studies, we investigated
log anomaly detection and showed that with simple data prepro-
cessing and parameter tuning, classical machine learning methods
can outperform DL methods and take much less time to train the
model.

5.2 Log-based Anomaly Detection
Log-based anomaly detection is the task of identifying the system’s
anomalous patterns that do not conform to the expected behav-
iors on normal log data. The log-based anomaly detection can be
divided into supervised learning [9, 47, 52] and unsupervised learn-
ing [24, 80]. Additionally, it can be divided into classical ML-Based
log anomaly detection methods [15, 80] and DLmethods [24, 52, 62].
Recently, NeuralLog [42] can achieve the best performance on four
public log dataset (HDFS [80], BGL, Thunderbird, Spirit [63]) with-
out log parsing. This paper shows that we can achieve the highest
performance on five public datasets (HDFS, BGL, Spirit, Thunder-
bird, Liberty [63]) by using simple methods without intricate log
preprocessing.

5.3 Automated Log Analysis
Automated log analysis aims to enable effective and efficient usage
of software-intensity systems, consisting of four aspects: (1) auto-
mate and assist log writing, (2) log compression, (3) log parsing, (4)
log mining.

Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Logging. Event logging is an essential method for recording
textual and numeric data of software systems, and its implementa-
tion often depends on an empirical process during the development
phase [65]. He et al. [32] identified three main concerns of develop-
ers regarding event logging, namely diagnosability, maintenance,
and performance. Several works have tackled the challenges of
automated logging, including where to log [14, 35, 86], what to
log [46, 46, 78], and how to log [13, 38, 50].

Log Compression. After collecting logs, they are typically
stored on the hard disk for further diagnosis or auditing of sensitive
operations. As the scale of distributed systems continues to grow,
the storage of accumulated logs can become a burden on the storage
system. He et al.[32] identified three categories of log compression
techniques: bucket-based compression[6, 26], dictionary-based com-
pression [18, 67], and statistics-based compression [8, 30]. Recently,
some works have made progress in achieving both storage cost and
time efficiency [25, 82].

Log Parsing. Log parsing is a critical component of automated
log analysis, which converts semi-structured logs into structured
data. Log parsing methods can be classified into two groups: of-
fline log parsing approaches [28, 53, 75] and online log parsing
approaches [17, 20, 31]. To address the problem of log message
format identification, Messaoudi et al.[58] proposed the MoLFI ap-
proach, which formulates it as a multi-objective problem. Some
works have focused on designing guidelines[37, 89] to evaluate
current log parsing methods comprehensively.

Automated Log Mining. Automated log mining involves auto-
matically exploring and analyzing large volumes of log data, with
the goal of extracting useful information from the systems and
predicting future trends to take early actions. To analyze logs auto-
matically, textual logs must first be transformed into appropriate
data formats. Several works have focused on extracting features
from logs [4, 7]. There are various topics within log mining, includ-
ing failure prediction [68], failure diagnosis [71, 87, 88], anomaly
detection [80, 81, 85], log-based slicing [59], log visualization [55],
and root cause analysis [44].

Our work focuses on anomaly detection, a typical and widely-
explored log mining task.

5.4 Empirical Studies on Logs
Empirical studies are essential in log analysis, providing valuable
insights into various aspects of academic and industrial practices.
He et al. [32] conducted a survey covering the entire lifecycle of
log analysis, including logging, log compression, log parsing, and
automated log mining. Other empirical studies have focused on
specific domains of log analysis, such as logging [45, 83, 84], log-
based anomaly detection [16, 33], software monitoring [11], cloud
log forensics [36], and cyber security applications [41].

Le et al. [43] conducted an empirical study on recent DL models
for log-based anomaly detection and found that the performance
of existing models was largely undermined by various factors, in-
cluding training data selection strategies, different dataset charac-
teristics, and early detection capability, indicating that the problem
of log-based anomaly detection is still unsolved.

In contrast to previous studies, our research demonstrates that
complex methods such as DL and intricate log preprocessing do

not necessarily outperform simple methods like KNN, SVM, and
DT. Additionally, our study includes five public log datasets, one
more than the study conducted by Le et al [43].

6 CONCLUSION
In this paper, we demonstrate that simple models can outperform
complex log vectorization methods and resource-intensive models,
achieving superior results with reduced computation time. We
then analyze why sophisticated DL methods fail to surpass these
simpler techniques. To assist researchers in determining whether
DL methods are necessary, we propose LightAD, an architecture
that optimizes three objectives using Bayesian optimization while
considering both performance metrics and time efficiency. This
approach automatically fine-tunes hyper-parameters for different
models, facilitating a fair comparison among various techniques.

Our findings reveal that on five public log datasets, basic meth-
ods not only match but can exceed the efficacy of DL techniques in
terms of both performance and efficiency. Consequently, we advise
researchers to consider simpler approaches for software engineer-
ing tasks before resorting to more complex DL methods. At the
very least, these simpler methods should be used as benchmarks
against more advanced techniques.

Moving forward, we plan to collect additional log datasets from
widely-used open-source software (e.g., Apache Kafka) and eval-
uate LightAD on new log benchmarks. Furthermore, we aim to
investigate how machine learning and log vectorization techniques
can be effectively applied in the log analysis domain.

7 DATA AVAILABILITY
The codes and data of this paper can be found at [3].

ACKNOWLEDGMENTS
We thank the anonymous ICSE reviewers for their valuable feedback
on the earlier draft of this paper. This paper was supported by the
National Natural Science Foundation of China (No. 62102340), and
Shenzhen Science and Technology Program.

REFERENCES
[1] 2022. A deep learning-based log analysis toolkit for automated anomaly detection.

Retrieved April 30, 2022 from https://github.com/logpai/deep-loglizer
[2] 2022. A machine learning-based log analysis toolkit for automated anomaly

detection. Retrieved April 30, 2022 from https://github.com/logpai/loglizer
[3] 2023. A toolkit for light automated log anomaly detection. https://github.com/

BoxiYu/LightAD
[4] Hen Amar, Lingfeng Bao, Nimrod Busany, David Lo, and Shahar Maoz. 2018.

Using finite-state models for log differencing. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 49–59.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Raju Balakrishnan and Ramendra K Sahoo. 2006. Lossless compression for large
scale cluster logs. In Proceedings 20th IEEE International Parallel & Distributed
Processing Symposium. IEEE, 7–pp.

[7] Lingfeng Bao, Nimrod Busany, David Lo, and Shahar Maoz. 2019. Statistical
log differencing. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 851–862.

[8] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D
Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. 267–277.

https://github.com/logpai/deep-loglizer
https://github.com/logpai/loglizer
https://github.com/BoxiYu/LightAD
https://github.com/BoxiYu/LightAD

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Boxi Yu, Jiayi Yao, Qiuai Fu, Zhiqing Zhong, Haotian Xie, Yaoliang Wu, Yuchi Ma, and Pinjia He

[9] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and Hans
Andersen. 2010. Fingerprinting the datacenter: automated classification of perfor-
mance crises. In Proceedings of the 5th European conference on Computer systems.
111–124.

[10] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data. 93–104.

[11] Jeanderson Candido, Maurício Aniche, and Arie van Deursen. 2019. Contempo-
rary software monitoring: A systematic literature review. arXiv e-prints (2019),
arXiv–1912.

[12] Qing Cao and Haoran Niu. 2022. Higher-order Markov Graph based Bug De-
tection in Cloud-based Deployments. In 2022 IEEE International Performance,
Computing, and Communications Conference (IPCCC). IEEE, 153–160.

[13] Boyuan Chen et al. 2017. Characterizing logging practices in java-based open
source software projects–a replication study in apache software foundation.
Empirical Software Engineering 22, 1 (2017), 330–374.

[14] Boyuan Chen and Zhen Ming Jiang. 2017. Characterizing and detecting anti-
patterns in the logging code. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 71–81.

[15] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. 2004.
Failure diagnosis using decision trees. In International Conference on Autonomic
Computing, 2004. Proceedings. IEEE, 36–43.

[16] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R Lyu. 2021.
Experience Report: Deep Learning-based System Log Analysis for Anomaly
Detection. arXiv preprint arXiv:2107.05908 (2021).

[17] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient log parsing using n-gram dictionaries. IEEE Transactions on
Software Engineering (2020).

[18] Sebastian Deorowicz and Szymon Grabowski. 2008. Sub-atomic field processing
for improved web log compression. In 2008 International Conference on" Modern
Problems of Radio Engineering, Telecommunications and Computer Science"(TCSET).
IEEE, 551–556.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[20] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[21] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[22] Facebook. 2019. Downtime, outages and failures - understanding their
true costs. http://www.evolven.com/blog/downtime-outages-and-failures-
understanding-their-true-costs.html

[23] Facebook. 2019. Facebook loses $24,420 a minute during outages.
https://www.theatlantic.com/technology/archive/2014/10/facebook-is-losing-
24420-per-minute/382054/

[24] Amir Farzad and T Aaron Gulliver. 2020. Unsupervised log message anomaly
detection. ICT Express 6, 3 (2020), 229–237.

[25] Peng Fei, Zhou Li, Zhiying Wang, Xiao Yu, Ding Li, and Kangkook Jee. 2021.
{SEAL}: Storage-efficient causality analysis on enterprise logs with query-
friendly compression. In 30th USENIX Security Symposium (USENIX Security
21). 2987–3004.

[26] Bo Feng, Chentao Wu, and Jie Li. 2016. MLC: an efficient multi-level log compres-
sion method for cloud backup systems. In 2016 IEEE Trustcom/BigDataSE/ISPA.
IEEE, 1358–1365.

[27] Evelyn Fix and Joseph Lawson Hodges. 1989. Discriminatory analysis. Non-
parametric discrimination: Consistency properties. International Statistical Re-
view/Revue Internationale de Statistique 57, 3 (1989), 238–247.

[28] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158.

[29] Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning. In
Proceedings of the 2017 11th joint meeting on foundations of software engineering.
49–60.

[30] Kimmo Hätönen, Jean François Boulicaut, Mika Klemettinen, Markus Miettinen,
and Cyrille Masson. 2003. Comprehensive log compression with frequent pat-
terns. In International Conference on Data Warehousing and Knowledge Discovery.
Springer, 360–370.

[31] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[32] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
Computing Surveys (CSUR) 54, 6 (2021), 1–37.

[33] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-
port: System log analysis for anomaly detection. In 2016 IEEE 27th international

symposium on software reliability engineering (ISSRE). IEEE, 207–218.
[34] Guang-Bin Huang, Yan-Qiu Chen, and Haroon A Babri. 2000. Classification

ability of single hidden layer feedforward neural networks. IEEE transactions on
neural networks 11, 3 (2000), 799–801.

[35] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora. 2008.
Automatic identification of load testing problems. In 2008 IEEE International
Conference on Software Maintenance. IEEE, 307–316.

[36] Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Mustapha Aminu
Bagiwa, Muhammad Shiraz, Samee U Khan, Rajkumar Buyya, and Albert Y
Zomaya. 2016. Cloud log forensics: foundations, state of the art, and future
directions. ACM Computing Surveys (CSUR) 49, 1 (2016), 1–42.

[37] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.
Guidelines for Assessing the Accuracy of Log Message Template Identification
Techniques. In Proceedings of the 44th International Conference on Software Engi-
neering (ICSE’22). ACM.

[38] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In
European conference on object-oriented programming. Springer, 220–242.

[39] Max Landauer, Sebastian Onder, Florian Skopik, and Markus Wurzenberger. 2022.
Deep Learning for Anomaly Detection in Log Data: A Survey. arXiv preprint
arXiv:2207.03820 (2022).

[40] Max Landauer, Sebastian Onder, Florian Skopik, and Markus Wurzenberger. 2023.
Deep learning for anomaly detection in log data: A survey. Machine Learning
with Applications 12 (2023), 100470.

[41] Max Landauer, Florian Skopik, Markus Wurzenberger, and Andreas Rauber.
2020. System log clustering approaches for cyber security applications: A survey.
Computers & Security 92 (2020), 101739.

[42] Van-Hoang Le and Hongyu Zhang. 2021. Log-based anomaly detection with-
out log parsing. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 492–504.

[43] Van Hoang Le and Hongyu Zhang. 2022. Log-based Anomaly Detection with
Deep Learning: How Far Are We? arXiv preprint arXiv:2202.04301 (2022).

[44] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,
Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021. Practical root cause
localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[45] Zhenhao Li, Tse-Hsun Peter Chen, Jinqiu Yang, and Weiyi Shang. 2021. Studying
duplicate logging statements and their relationships with code clones. IEEE
Transactions on Software Engineering (2021).

[46] Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. 2021. Deeplv:
Suggesting log levels using ordinal based neural networks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 1461–1472.

[47] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure
prediction in ibm bluegene/l event logs. In Seventh IEEE International Conference
on Data Mining (ICDM 2007). IEEE, 583–588.

[48] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.
102–111.

[49] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[50] Joshua Lockerman, Jose M Faleiro, Juno Kim, Soham Sankaran, Daniel J Abadi,
James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. 2018. The {FuzzyLog}:
A Partially Ordered Shared Log. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 357–372.

[51] Jian-Guang Lou, Qiang Fu, Shenqi Yang, Ye Xu, and Jiang Li. 2010. Mining
invariants from console logs for system problem detection. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10).

[52] Siyang Lu, Xiang Wei, Yandong Li, and Liqiang Wang. 2018. Detecting anomaly
in big data system logs using convolutional neural network. In 2018 IEEE 16th Intl
Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).
IEEE, 151–158.

[53] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2009.
Clustering event logs using iterative partitioning. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1255–1264.

[54] Mika Mäntylä, Martín Varela, and Shayan Hashemi. 2022. Pinpointing anomaly
events in logs from stability testing–n-grams vs. deep-learning. In 2022 IEEE
International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW). IEEE, 285–292.

[55] Shahar Maoz and David Harel. 2011. On tracing reactive systems. Software &
Systems Modeling 10, 4 (2011), 447–468.

[56] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. LogAnomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs.. In IJCAI,
Vol. 19. 4739–4745.

http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
https://www.theatlantic.com/technology/archive/2014/10/facebook-is-losing-24420-per-minute/382054/
https://www.theatlantic.com/technology/archive/2014/10/facebook-is-losing-24420-per-minute/382054/

Deep Learning or Classical Machine Learning? An Empirical Study on Log-Based Anomaly Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[57] Tim Menzies, Suvodeep Majumder, Nikhila Balaji, Katie Brey, and Wei Fu. 2018.
500+ times faster than deep learning:(a case study exploring faster methods for
text mining stackoverflow). In 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR). IEEE, 554–563.

[58] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identifica-
tion of log message formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). IEEE, 167–16710.

[59] Salma Messaoudi, Donghwan Shin, Annibale Panichella, Domenico Bianculli,
and Lionel C Briand. 2021. Log-based slicing for system-level test cases. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 517–528.

[60] Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu, and Hua
Cai. 2013. Toward fine-grained, unsupervised, scalable performance diagnosis
for production cloud computing systems. IEEE Transactions on Parallel and
Distributed Systems 24, 6 (2013), 1245–1255.

[61] Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. 2009. Efficiently
extracting operational profiles from execution logs using suffix arrays. In 2009
20th International Symposium on Software Reliability Engineering. IEEE, 41–50.

[62] Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. 2020. Self-attentive classification-based anomaly detection in unstruc-
tured logs. In 2020 IEEE International Conference on Data Mining (ICDM). IEEE,
1196–1201.

[63] Adam Oliner and Jon Stearley. 2007. What supercomputers say: A study of
five system logs. In 37th annual IEEE/IFIP international conference on dependable
systems and networks (DSN’07). IEEE, 575–584.

[64] Kishore Papineni. 2001. Why inverse document frequency?. In Second Meeting of
the North American Chapter of the Association for Computational Linguistics.

[65] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry practices and event logging: Assessment of a critical software
development process. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 2. IEEE, 169–178.

[66] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[67] Balázs Rácz and András Lukács. 2004. High density compression of log files. In
Data Compression Conference, 2004. Proceedings. DCC 2004. IEEE, 557.

[68] Barbara Russo, Giancarlo Succi, and Witold Pedrycz. 2015. Mining system logs
to learn error predictors: a case study of a telemetry system. Empirical Software
Engineering 20, 4 (2015), 879–927.

[69] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513–523.

[70] Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search.
In 2012 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 5149–5152.

[71] Weiyi Shang, Zhen Ming Jiang, Hadi Hemmati, Brain Adams, Ahmed E Hassan,
and Patrick Martin. 2013. Assisting developers of big data analytics applications
when deploying on hadoop clouds. In 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 402–411.

[72] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. Advances in neural information
processing systems 25 (2012).

[73] StatusCake Team. 2020. The Most Expensive Website Downtime Periods in
History. https://www.statuscake.com/the-most-expensive-website-downtime-
periods-in-history/

[74] UpGuard. 2019. The cost of downtime at the world’s biggest online retailer.
Retrieved September 1, 2020 from https://www.upguard.com/blog/the-cost-of-

downtime-at-the-worlds-biggest-online-retailer
[75] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event

logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM 2003)(IEEE Cat. No. 03EX764). Ieee, 119–126.

[76] Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering and
pattern mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM). IEEE, 1–7.

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[78] Zehao Wang, Haoxiang Zhang, Tse-Hsun Chen, and Shaowei Wang. 2021. Would
you like a quick peek? providing logging support to monitor data processing in
big data applications. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 516–526.

[79] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[80] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.

[81] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised log-based anomaly detection via
probabilistic label estimation. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1448–1460.

[82] Kundi Yao, Mohammed Sayagh, Weiyi Shang, and Ahmed E Hassan. 2021. Im-
proving State-of-the-art Compression Techniques for Log Management Tools.
IEEE Transactions on Software Engineering (2021).

[83] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming
Tang, Yuanyuan Zhou, and Stefan Savage. 2012. Be conservative: Enhancing
failure diagnosis with proactive logging. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). 293–306.

[84] Haonan Zhang, Yiming Tang, Maxime Lamothe, Heng Li, and Weiyi Shang. 2022.
Studying logging practice in test code. Empirical Software Engineering 27, 4
(2022), 1–45.

[85] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

[86] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. 2017. Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold. In Proceedings of the 26th Symposium on
Operating Systems Principles. 565–581.

[87] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018.
Fault analysis and debugging of microservice systems: Industrial survey, bench-
mark system, and empirical study. IEEE Transactions on Software Engineering 47,
2 (2018), 243–260.

[88] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. 2019. Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 683–694.

[89] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

https://www.statuscake.com/the-most-expensive-website-downtime-periods-in-history/
https://www.statuscake.com/the-most-expensive-website-downtime-periods-in-history/
https://www.upguard.com/blog/the-cost-of-downtime-at-the-worlds-biggest-online-retailer
https://www.upguard.com/blog/the-cost-of-downtime-at-the-worlds-biggest-online-retailer

	Abstract
	1 Introduction
	2 Background
	2.1 Log-based Anomaly Detection Workflow
	2.2 Representative Approaches

	3 Experimental Setup
	3.1 Research Questions
	3.2 Experimental Environments
	3.3 Dataset
	3.4 Evaluated Models
	3.5 Evaluation Metrics

	4 Results and Discussions
	4.1 RQ1: Do DL Methods Have Advantages Over Simple Ones on Log Anomaly Detection?
	4.2 RQ2: Why Do Intricate Anomaly Detection Methods Not Outperform Simple Ones?
	4.3 RQ3: When Do We Really Need DL Methods?
	4.4 Threats to Validity

	5 Related Work
	5.1 Empirical Studies of Classical Machine Learning Over Deep Learning
	5.2 Log-based Anomaly Detection
	5.3 Automated Log Analysis
	5.4 Empirical Studies on Logs

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

